Step of Proof: assert_of_le_int
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
assert
of
le
int
:
x
,
y
:
. (
x
z
y
)
(
x
y
)
latex
by ((((Unfolds ``le_int le`` 0)
CollapseTHEN (UnivCD))
)
CollapseTHENA ((Auto_aux (first_nat
C
1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
x
:
C1:
2.
y
:
C1:
(
(
y
<z
x
))
(
(
y
<
x
))
C
.
Definitions
t
T
,
A
B
,
i
z
j
,
x
:
A
.
B
(
x
)
origin